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Abstract. Finite-dimensional model spaces are quotient spaces of the Hardy space on
the open unit disc, determined by finite Blaschke products. Composition operators, on
the other hand, act by composing Hardy space functions with analytic self-maps of the
open unit disc. Both are classical and well-studied objects in the theory of analytic func-
tion spaces. In this paper, we present a complete characterization of finite-dimensional
model spaces that are invariant under composition operators. Finite cyclic groups and
the prime factorizations of natural numbers play a crucial role in understanding the
structure of such invariant subspaces and the associated analytic self-maps.
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1. Introduction

The genesis of this paper lies in the interplay between two natural and widely studied
analytic objects: composition operators and finite-dimensional spaces associated with
Blaschke products. The latter class of spaces is known as model spaces (more specifically,
as finite-dimensional model spaces).

Unbeknownst to Mashreghi et al. [9], the first and second authors in [11] studied
this problem in broad generality, yielding abstract results and leaving many questions
unresolved even at the level of finite-dimensional model spaces. In this paper, we revisit
the results of [9] and [11] and present them in a more unified and broader framework at
the level of finite-dimensional model spaces. The results presented in this paper provide
a comprehensive treatment of the subject. This paper also identifies and corrects certain
errors in [9], sharpens some of its results and proofs, and answers a question posed therein.
Nevertheless, some of the groundwork and underlying notions (such as group-theoretic
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tools) employed in this paper originate from [9] (as well as from [11] to some extent).
In our analysis, we combine finite group-theoretic methods with insights drawn from the
prime factorizations of natural numbers, specifically those corresponding to the sizes of
the zero sets of finite Blaschke products. We now proceed to introduce the key concepts
of the paper.

For each λ in the open unit disc D = {z ∈ C : |z| < 1}, we define the corresponding
Blaschke product bλ as follows:

bλ(z) =
z − λ
1− λ̄z

,

for all z ∈ D. Given λ1, . . . , λn ∈ D, we define the finite Blaschke product

θ =
n∏
j=1

bλj .

The model space (or, finite-dimensional model space to be more specific) associated with
θ is defined as

Qθ = H2 	 θH2,

where H2 denotes the Hardy space on D. It is known that

dimQθ = n.

The other key object in our study is the composition operator. Given an analytic self-map
ϕ : D→ D (in short, ϕ ∈ S(D)), the composition operator Cϕ is defined on H2 by

Cϕf = f ◦ ϕ (f ∈ H2).

It is a classical result that Cϕ is a bounded linear operator on H2 for all ϕ ∈ S(D) [13].
The goal of this paper is to determine finite Blaschke products θ and analytic self-maps
ϕ ∈ S(D) such that

CϕQθ ⊆ Qθ,
That is, the finite-dimensional model spaces Qθ that are invariant under the composition
operator Cϕ. More specifically, our aim is to study the following object:

D(Qθ) = {ϕ ∈ S(D) : CϕQθ ⊆ Qθ} .

Given that the elements of Qθ are rational functions, one can consider Qθ as a function
space defined on the extended complex plane; that is, the Riemann sphere C∞ = C∪{∞}.
This perspective suggests another object similar to D(Qθ), defined as follows:

L(Qθ) = {ϕ : C∞ → C∞ analytic, ϕ 6≡ ∞, and CϕQθ ⊆ Qθ}

Observe that rational functions are precisely the functions holomorphic at ∞; hence,
every element of L(Qθ) is necessarily a rational function (also see [9, Section 1]). The
motivation for these objects comes from [9] (and also [11]). Three natural questions arise
immediately:

(1) What are the elements of the set D(Qθ)?
(2) What type of structure do these elements form?
(3) The same questions as (1) and (2) above, but considered in the setting of L(Qθ).
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There are many other questions that arise naturally. For instance, in [9], Mashreghi et
al. posed the problem of classifying finite Blaschke products θ for which

L(Qθ) 6= {z},

where z denotes the identity map. Of course, the same question makes sense in the case
of D(Qθ): for which Blaschke products θ does one have D(Qθ) 6= {z}? We address all
of these questions and show that the answers vary from case to case, as is typical in the
theory of composition operators. In particular, as we will see, the results naturally divide
into two classes: those corresponding to finite Blaschke products that vanish at the origin
and those that do not. Following [9], we also discuss the group structure associated with
them. As

z ∈ L(Qθ) ∩D(Qθ),
it follows that L(Qθ) and D(Qθ) are nonempty. In fact, for any finite Blaschke product
θ other than rotations (see Remark 2.1 for rotations), we have (see Proposition 2.2)

D(Qθ) ⊆ L(Qθ).

It is easy to see that L(Qθ) and D(Qθ) are semigroups. Throughout this article, all
groups and semigroups are considered with respect to function composition. We now
outline some of the main results of this paper: We begin by considering the case where θ
is a finite Blaschke product with a single zero of arbitrary multiplicity:

θ = bnλ,

for some λ ∈ D \ {0} and n ∈ N. In Proposition 3.1, we recollect from [9, Theorem 2.1]
that

L(Qθ) =

{
(1− λ̄a)z + a : a ∈ C, a 6= 1

λ̄

}
,

and point out that

D(Qθ) = {z} .
In particular, D(Qθ) is a trivial group, whereas L(Qθ) is a noncyclic infinite group. Note
also that L(Qθ) ⊆ Aut(C) and D(Qθ) ⊆ Aut(D). Throughout, Aut(D) and Aut(C)
denote the sets of all biholomorphic maps of D and C, respectively.

For a general finite Blaschke product θ that is nonvanishing at the origin, the following
holds (see Theorem 3.5): ϕ ∈ D(Qθ) if and only if there exists a constant α ∈ T such
that ϕ(z) = αz with

multθ(λ) = multθ(ᾱλ)

for all λ ∈ Z(θ).
For an analytic function f on X ⊆ C, we denote its zero set by

Z(f) = {α ∈ X : f(α) = 0} .

We denote by multf (α) the multiplicity of α as a zero of f . Note that multf (α) = 0
indicates that f(α) 6= 0. The above result also should be attributed to Mashreghi et
al. [9, Corollary 2.4]. However, our presentation, proof, and perspective differ slightly.
This formulation is also best suited to our framework (see the discussions preceding and
following Theorem 3.5). For instance, from the above, it is now clear that rotations are
the appropriate candidates for the set D(Qθ).
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A question arises: which subsets of T give rise to such a set of rotations? Moreover, how
can such subsets be related to the finite Blaschke product θ? Within the same setting,
we obtain the following answer to this question (see Corollary 3.6):

(1) αz ∈ D(Qθ) if and only if ᾱz ∈ D(Qθ).
(2) αz ∈ D(Qθ) if and only if multθ(λ) = multθ(αλ) for all λ ∈ Z(θ).
(3) αz 6∈ D(Qθ) if and only if there exists an λ ∈ Z(θ) such that multθ(λ) 6=

multθ(αλ).

The choice of scalars α in T above admits a group-theoretic interpretation, which can
be stated as follows (see Theorem 4.1): Assume that

θ =
n∏
i=1

bmiλi ,

for distinct {λ1, . . . , λn} ⊆ D\{0} and natural numbers mi, i = 1, . . . , n. Then ϕ ∈ D(Qθ)
if and only if ϕ = ωz, where

ω̄ =
λσ(1)

λ1

=
λσ(2)

λ2

= · · · =
λσ(n)

λn
,

for some σ ∈ Sn with mi = mσ(i) for all i ∈ {1, . . . , n}. Moreover, in this case, we have
(see Corollary 4.5)

D(Qθ) = 〈e
2πi
d z〉,

for some divisor d of n = #Z(θ). Here we follow the standard notation: We use 〈e 2πi
m z〉,

m ∈ N, to denote the finite cyclic group{
e

2πit
m z : t = 0, 1, . . . ,m− 1

}
,

under composition generated by e
2πi
m z (note that e

2πi
m is the primitive m-th root of unity).

We also denote by Sn the symmetric group on n letters.
This raises a number of natural questions, many of which have been both posed and

addressed in this paper. One problem we highlight here is the following: given θ as above,
under what conditions do we have

D(Qθ) = 〈e
2πi
n z〉?

In Theorem 4.8, we prove that D(Qθ) = 〈e 2πi
n z〉 if and only if

{
λ1

λ1

,
λ2

λ1

, . . . ,
λn
λ1

}
is a

multiplicative group, and
m1 = m2 = · · · = mn.

We now turn to the question of determining when L(Qθ) = {z} as well as D(Qθ) = {z}.
We provide the following answer (see Theorem 5.3): Let θ be a finite Blaschke product.
Assume that θ(0) 6= 0. Consider the prime factorization of n := #Z(θ) as

n = pk11 · · · pkmm .

Then
D(Qθ) = {z},

if and only if for each j ∈ {1, . . . ,m}, there exists λj ∈ Z(θ) such that

multθ(λj) 6= multθ(e
2πi
pj λj).
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Moreover, in Theorem 5.4, we prove the following: Given a finite Blaschke product θ, we
have L(Qθ) = {z} if and only if the following conditions hold:

(1) θ(0) 6= 0.
(2) #Z(θ) ≥ 2.
(3) For every non-constant affine map az + b, other than the identity, there exists

λ ∈ Z(θ) such that

multθ(λ) 6= multθ

(
āλ

1− b̄λ

)
.

The situation changes when we shift our focus to finite Blaschke products that vanish
at the origin. To illustrate this, we outline the following results, as observed in Corollary
6.3: For λ ∈ D \ {0} and n ≥ 1, define

θ = zbnλ.

Then

L(Qθ) =

{
ϕ ∈ Mob(C∞) : ϕ

(
1

λ̄

)
=

1

λ̄

}
∪ C,

and

D(Qθ) =

{
ϕ ∈ S(D) ∩Mob(C∞) : ϕ

(
1

λ̄

)
=

1

λ̄

}
∪ D.

These results are comparable to Theorem 2.5 and Corollary 2.6 of [9]. Moreover, in the
above setting, we have new information:

(D(Qθ) \ D) ∩ Aut(D),

is uncountable, and L(Qθ) \C is a non-cyclic infinite group. Here, Mob(C∞) denotes the
group of all Möbius transformations of the extended complex plane C∞ = C ∪ {∞}.

However, for a finite Blaschke product with a zero at the origin of higher multiplicity,
we encounter a markedly different scenario once again (see Theorem 6.4): Let m ≥ 2,
n ≥ 1, and let λ ∈ D \ {0}. Define

θ = zmbnλ.

Then

L(Qθ) =

{
(1− λ̄a)z + a : a 6= 1

λ̄

}
∪
(
C \

{
1

λ̄

})
,

and
D(Qθ) = {z} ∪ D.

In particular, in this case (see Corollary 6.5), D(Qθ) \D is a trivial group and L(Qθ) \C
is an uncountable group. This result holds after a major revision of Theorem 2.9 from [9].

Now we consider a finite Blaschke product θ satisfying θ(0) = 0, θ′(0) 6= 0, and

#(Z(θ) \ {0}) ≥ 2.

In Theorem 7.4 and Corollary 7.5, we prove that ϕ ∈ L(Qθ) if and only if ϕ is a Möbius
transformation and

multθ(λ) = multθ(ϕ̃(λ)),

for all λ ∈ Z(θ) \ {0}. Further, we have

D(Qθ) = L(Qθ) ∩ S(D).

In the case of ϕ ∈ D(Qθ), if ϕ is non-constant, then we have
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(1) ϕ ∈ Aut(D).
(2) There exists n ∈ N such that ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n times

= I.

The most general result concerning finite Blaschke products θ that vanish at the origin
is Corollary 7.6, which states that if

#(Z(θ) \ {0}) ≥ 2,

then D(Qθ) \ C forms a group under composition.
Needless to say, the above collection of results varies significantly from case to case,

highlighting the rich and intricate structure of composition operators, even within the
framework of finite-dimensional model spaces. Many additional results in this paper as
well as in the broader literature further explore these themes along similar lines.

From this perspective, we remind the reader that the invariant subspace problem for
composition operators is a classical and challenging problem. In fact, the invariant sub-
space problem for operators on Hilbert spaces is equivalent to the one-dimensional minimal
invariant subspace problem for composition operators with hyperbolic symbols [12]. This
scenario also serves as an additional motivation besides the study of lattice structures
of composition operators for the theory developed in this paper. We refer the reader to
[1, 3, 6, 8, 10, 11] and references therein for more results in this direction. For a list of
exotic properties and their connections to diverse aspects of composition operators, we
refer the reader to [2, 5, 4].

The remaining part of the paper is structured as follows. Section 2 presents some
general observations that are used throughout the paper. Section 3 provides a precise
description of model spaces corresponding to finite Blaschke products that do not vanish
at the origin. Section 4 explores the natural emergence of finite cyclic groups, particularly
in the context of finite subsets of the unit circle T. In Section 5, we present a complete
solution to the question of the nontriviality of the groups that arise naturally in the study
of self-analytic functions on D within the framework of model spaces. Sections 6 and 7
deal with the analysis of model spaces associated with finite Blaschke products that vanish
at the origin. This setting brings Möbius transformations into consideration. Section 8 is
devoted entirely to a detailed example, motivated by earlier work in [9]. We revisit this
example to correct certain inaccuracies and to present its full significance within a more
general framework. The final section, Section 9, presents general observations, outlines
potential directions for future research, and includes a summary table highlighting some
of the key results obtained in this paper.

2. Basic observations

We treat this section as a warm-up for the results presented in the forthcoming sections.
We also derive some elementary observations. Recall that

dimQθ = deg θ,

for each finite Blaschke product θ. We first consider the case of one-dimensional model
spaces. These spaces correspond to θ = bα, α ∈ D. However, here we focus only on the
case α = 0 (see Proposition 3.1 for the α 6= 0 case):
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Remark 2.1. Let θ = αz for some α ∈ T. Then

Qθ = H2 	 zH2 = C,
where C represents the space of all constant functions on D. In this case, it is trivial to
note that

L(Qθ) = {all the rational functions},
and

D(Qθ) = S(D),

and consequently, L(Qθ) and D(Qθ) are not comparable semigroups.

We recall a general fact about the basis vectors of finite-dimensional model spaces,
which will be used frequently in what follows. Recall that if θ is a finite Blaschke product
with distinct zeros λ1, . . . , λk of multiplicities n1, . . . , nk, respectively, then the set

(2.1)
{
c

(`i)
λi

: 0 ≤ `i ≤ ni − 1, 1 ≤ i ≤ k
}
,

form a basis for Qθ. Here, the function c
(s)
λ is defined by

c
(s)
λ (z) =

zs

(1− λ̄z)s+1
.

If λ 6= 0, then c
(s)
λ may also be taken as

(2.2) c
(s)
λ (z) =

1

(1− λ̄z)s+1
.

In particular, we have
dimQθ = n1 + · · ·+ nk.

The following result is key, relying on the fact that Qθ consists of rational functions.
While the containment is elementary, it will be useful in what follows.

Proposition 2.2. Let θ be a finite Blaschke product that is not a rotation. Then

D(Qθ) ⊆ L(Qθ).

Proof. Suppose ϕ ∈ D(Qθ). To show that ϕ ∈ L(Qθ), it suffices to show that ϕ is a
rational map. First, assume that z ∈ Qθ. Then

z ◦ ϕ = ϕ ∈ Qθ,
which implies that ϕ is a rational function. Next, assume that z /∈ Qθ. Since θ is not a
rotation, it follows that

Z(θ) \ {0} 6= ∅.
Pick λ ∈ Z(θ) \ {0}. This implies θ = bλθ̃ for some finite Blaschke product θ̃. Then

1

1− λ̄z
∈ Qθ, and hence

1

1− λ̄z
◦ ϕ =

1

1− λ̄ϕ
∈ Qθ,

it follows, in this case as well, that ϕ is a rational map. Therefore, in both cases we have
ϕ ∈ L(Qθ). This completes the proof. �

The following simple lemma will be used throughout this paper repeatedly.
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Lemma 2.3. Let ϕ : D→ C be an analytic function. Suppose

1

1− pϕ(z)
=

a

1− qz
(z ∈ D),

for some complex numbers 0 < |p| ≤ |q| < 1 and a 6= 0. Then the following conditions
are equivalent:

(1) ϕ ∈ S(D).
(2) a = 1 and |p| = |q|.
(3) ϕ is a rotation.

In either of these cases, we have ϕ(z) = q
p
z.

Proof. By cross-multiplying the equation given in the hypothesis, we immediately obtain

ϕ(z) =
q

ap
z +

a− 1

ap
.

Suppose (1) holds, that is, ϕ ∈ S(D). Assume, if possible, that a 6= 1. Since 0 < |p| < 1,
it follows that ∣∣∣∣a− 1

ap

∣∣∣∣ > ∣∣∣∣a− 1

a

∣∣∣∣ .
By the triangle inequality, we have∣∣∣∣a− 1

ap

∣∣∣∣+

∣∣∣∣1a qp
∣∣∣∣ > ∣∣∣∣a− 1

a

∣∣∣∣+

∣∣∣∣1a
∣∣∣∣ ≥ 1.

Therefore ϕ is not a self-map of D. It yields that a = 1, and thus

ϕ(z) =
q

p
z.

Also note that ϕ cannot be a self-map of D if |p| < |q|. Hence ϕ(z) = q
p
z with |p| = |q|.

Thus, we have shown that (1) implies (2), and (2) implies (3). The implication (3)⇒ (1)
is immediate. �

3. Blaschke products nonvanishing at 0

This section discusses the structures of D(Qθ) and L(Qθ) under the condition that θ
is a finite Blaschke product and that θ(0) is nonzero. Part of this section also recalls
a collection of results, primarily from [9] (and also from [11]), to provide a complete
structures of D(Qθ) and L(Qθ) associated with θ. However, we note that, along the way,
we will also refine some of those results to provide a clearer understanding of these sets.

We first consider the case where θ is a finite Blaschke product with a singleton zero
set. A major part of the following result was established in [9] and [11]. The second part
follows easily from Lemma 2.3. We will use this result in the later sections of the paper.

Proposition 3.1. Let θ = bnλ for some λ ∈ D \ {0} and n ∈ N. Then

L(Qθ) =

{
(1− λ̄a)z + a : a ∈ C, a 6= 1

λ̄

}
,

and

D(Qθ) = {z} .
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Proof. For the first part, see [9, Theorem 2.1] (or see [11, Theorem 3.1]). For the repre-
sentation of D(Qθ), we apply [11, Theorem 3.1] (or [9, Theorem 2.1]) to find a constant
c such that

1− λ̄ϕ = c(1− λ̄z).

By Lemma 2.3, we get ϕ(z) = z, which proves that D(Qθ) = {z}. �

In particular, we obtain the following contrasting result:

Corollary 3.2. Let θ = bnλ for some λ ∈ D \ {0} and n ∈ N. Then D(Qθ) is a trivial
group, whereas L(Qθ) is a noncyclic infinite group.

This completes the discussion of finite Blaschke products with a singleton zero set. We
now turn to the case of finite Blaschke products θ where θ(0) 6= 0 and

#Z(θ) ≥ 2.

The following lemma is an improvement of [9, Lemma 2.2]. Specifically, we remove the
assumption that ϕ is a rational function, which was required in the original statement.
We do, however, utilize that lemma to produce the subsequent sharper version, wherein
all relevant conditions are essentially consolidated into a single, unified condition.

Lemma 3.3. Let θ be a finite Blaschke product that does not vanish at the origin. Assume
that #Z(θ) ≥ 2. Then ϕ ∈ L(Qθ) if and only if there exist constants a(6= 0) and b such
that

ϕ(z) = az + b,

with

multθ(λ) = multθ

(
aλ

1− bλ

)
,

for all λ ∈ Z(θ).

Proof. Suppose ϕ ∈ L(Qθ). As in the proof of Proposition 2.2, ϕ is a rational function.
Now if ϕ = z, then the desired result follows. On the other hand, if ϕ 6= z, then [9,
Lemma 2.2] implies the result. For the converse direction, suppose there exist constants
a(6= 0) and b such that

ϕ(z) = az + b,

with

multθ(λ) = multθ

(
aλ

1− bλ

)
,

for all λ ∈ Z(θ). To show ϕ ∈ L(Qθ) (that is CϕQθ ⊆ Qθ), we start with a basis element
1

(1−λ̄z)s , where λ ∈ Z(θ) and s ≤ multθ(λ). Then

1

(1− λ̄z)s
◦ ϕ =

1

(1− λ̄(az + b))s
=

1

(1− bλ)s
1(

1−
(

aλ
1−bλ

)
z

)s .
Combined with the fact that

s ≤ multθ(λ) = multθ

(
aλ

1− bλ

)
,
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we obtain
1

(1− λ̄z)s
◦ ϕ ∈ Qθ,

which completes the result. �

The above multiplicity condition also ensures that aλ
1−bλ ∈ Z(θ). Next, we recall from

[9, Theorem 2.3] a rigidity-type result concerning affine transformation symbols for model
spaces associated with Blaschke products having two distinct zeros.

Proposition 3.4. Let θ be a finite Blaschke product. Assume that θ(0) 6= 0 and #Z(θ) ≥
2. Then there exist a, b ∈ C and n ∈ N such that

L(Qθ) =
{
z, ϕ, ϕ[2], . . . , ϕ[n−1]

}
where

ϕ(z) = az + b,

and

ϕ[n] = z.

In particular, L(Qθ) is a finite cyclic subgroup of Aut(C).

In these circumstances, we also have a description of D(Qθ) from [9, Corollary 2.4 ]:
Let θ be a finite Blaschke product. Suppose θ(0) 6= 0 and #Z(θ) ≥ 2. Then ϕ ∈ D(Qθ)
if and only if following conditions hold:

(i) ϕ(z) = αz for some α ∈ T.
(ii) αn = 1 for some n ∈ N.

(iii) αλ ∈ Z(θ) for all λ ∈ Z(θ).
(iv) The zeros {λ, αλ, . . . , αn−1λ} of θ have same multiplicity.

The proof of this result is involved, as it relies on non-trivial results concerning the
iterative behavior of loxodromic and parabolic Möbius transformations. In the following,
we present a slightly modified version of [9, Corollary 2.4] analogous to a conjugation of
the scalar part in rotation maps along with a different proof. This version leads to several
useful consequences. Moreover, it will both imply and be implied by [9, Corollary 2.4], as
we will point out after the proof.

Theorem 3.5. Let θ be a finite Blaschke product. Assume that θ(0) 6= 0. Then ϕ ∈ D(Qθ)
if and only if ϕ(z) = αz for some α ∈ T with

multθ(λ) = multθ(ᾱλ)

for all λ ∈ Z(θ).

Proof. Suppose θ =
n∏
i=1

bmiλi , where λi are nonzero distinct elements in D and mi are

natural numbers. Suppose that ϕ ∈ D(Qθ). If n = 1, then the result simply follows from
Proposition 3.1 (with the choice of α = 1). Assume that n ≥ 2. By Proposition 3.4, there
exist constants α and β such that

ϕ(z) = αz + β.
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Choose λ ∈ Z(θ) such that |λ| = min {|λ1|, . . . , |λn|}. As
1

1− λ̄z
∈ Qθ, we have

1

1− λ̄z
◦ ϕ =

1

1− λ̄ϕ
=

n∑
i=1

mi∑
j=1

cij
(1− λ̄iz)j

,

for some constants cij with at least one of them is nonzero. By the identity theorem, the
equality holds on the entire complex plane except possibly at finitely many poles. Since
the function on the left-hand side has exactly one pole of order 1, the equation implies
that

1

1− λ̄ϕ
=

c

1− λ̄kz
,

for some k ∈ {1, . . . , n} and c 6= 0. At this point, Lemma 2.3 applies and yields

ϕ(z) = αz,

for some constant α ∈ T. Fix i ∈ {1, . . . , n}. As 1
(1−λ̄iz)mi

∈ Qθ, we have

1

(1− λ̄iαz)mi
=

1

(1− λ̄iz)mi
◦ ϕ ∈ Qθ,

and hence ᾱλi ∈ Z(θ). Indeed, if ᾱλi /∈ Z(θ), then, by considering a basis for Qθ
consisting of functions of the form given in (2.2), we obtain

1

(1− λ̄iαz)mi
/∈ Qθ,

leading to a contradiction. Thus, we have that λ ∈ Z(θ) implies ᾱλ ∈ Z(θ). This also
implies that

mi = multθ(λi) ≤ multθ(ᾱλi).

By applying this argument iteratively, we conclude, for all λ ∈ Z(θ) and k ∈ N, that

ᾱkλ ∈ Z(θ),

and

multθ(λ) ≤ multθ(ᾱλ) ≤ · · · ≤ multθ(ᾱ
kλ).

Moreover, as θ has only finitely many zeros, it follows that

(3.1) ᾱm = 1,

for some m ∈ N, and then, for any λ ∈ Z(θ), we have

multθ(λ) ≤ multθ(ᾱλ) ≤ · · · ≤ multθ(ᾱ
mλ) = multθ(λ),

and hence, multθ(λ) = multθ(ᾱλ).
The converse part is easy: Suppose α is a constant such that ϕ(z) = αz and multθ(λ) =
multθ(ᾱλ) for all λ ∈ Z(θ). Then for any arbitrary basis element 1

(1−λ̄z)l of Qθ, for some

l ∈ {1, . . . ,multθ(λ)}, we have

1

(1− λ̄z)l
◦ ϕ =

1

(1− λ̄αz)l
∈ Qθ,

and hence ϕ ∈ D(Qθ). This completes the proof of the theorem. �
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It is important to note that ᾱm = 1 for some m ∈ N and multθ(λ) = multθ(ᾱλ) for all
λ ∈ Z(θ) in the above result is equivalent to

multθ(λ) = multθ(αλ),

for all λ ∈ Z(θ). This recovers the exact statement of [9, Corollary 2.4 ]. Similarly, it also
recovers the version we proved above. As an immediate consequence of these results, we
have the following:

Corollary 3.6. Let θ be a finite Blaschke product and let α ∈ T. Assume that θ(0) 6= 0.
Then we have the following:

(1) αz ∈ D(Qθ) if and only if ᾱz ∈ D(Qθ).
(2) αz ∈ D(Qθ) if and only if multθ(λ) = multθ(αλ) for all λ ∈ Z(θ).
(3) αz 6∈ D(Qθ) if and only if there exists an λ ∈ Z(θ) such that multθ(λ) 6=

multθ(αλ).

Results concerning representations of functions in D(Qθ) and L(Qθ), corresponding to
finite Blaschke products θ that vanish at the origin, will be considered in Section 6.

4. Cyclic groups

Here, we continue with the setting of the previous section and introduce group-theoretic
tools to study the sets D(Qθ) and L(Qθ).

In the setting described in Corollary 3.6, we know that α is of finite order-specifically,

αm = 1,

as observed in equation (3.1) (and also in [9, Corollary 2.4], as previously noted). We now
turn to providing a precise interpretation of the index m and its role in the structure of
D(Qθ) and L(Qθ). This is done through the lens of finite cyclic groups. To that end, we
first present another characterization of functions in the class D(Qθ). For each n ∈ N, in
what follows, we write

Jn = {1, . . . , n},
and denote by Sn the symmetric group of degree n.

Theorem 4.1. Let {λ1, . . . , λn} ⊆ D \ {0} be a set of distinct elements and let mi ∈ N,

i = 1, . . . , n. Let θ =
n∏
i=1

bmiλi . Then ϕ ∈ D(Qθ) if and only if ϕ = ωz, where

ω̄ =
λσ(1)

λ1

=
λσ(2)

λ2

= · · · =
λσ(n)

λn
,

for some σ ∈ Sn with mi = mσ(i) for all i ∈ Jn.

Proof. Let ϕ ∈ D(Qθ). By Theorem 3.5, there exists ω ∈ T such that ϕ(z) = ωz and
ω̄λ ∈ Z(θ) for all λ ∈ Z(θ). Thus for each i ∈ Jn, there is an j ∈ Jn such that ω̄λi = λj.
Define σ : J → J by

ωλi = λσ(i),

for all i ∈ Jn. It is easy to see that σ is injective. Since Jn is finite set, σ is onto. Thus
σ ∈ Sn and

ω =
λσ(1)

λ1

=
λσ(2)

λ2

= · · · =
λσ(n)

λn
.
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Since ωz ∈ D(Qθ), again by Theorem 3.5, for each i ∈ Jn, we have

mi = multθ(λi) = multθ(ωλi) = multθ(λσ(i)) = mσ(i).

For the converse direction, assume ϕ = ωz, where ω satisfies the identity given in the
statement. Then

Cϕ

(
1

(1− λ̄iz)k

)
=

1

(1− λ̄iz)k
◦ ϕ =

1

(1− λ̄iωz)k
=

1

(1− λ̄σ(i)z)k
∈ Qθ,

for all k ∈ {1, . . . ,mi} and i ∈ Jn. Hence ϕ ∈ D(Qθ), completing the proof of the
theorem. �

Remark 4.2. In the setting of Theorem 4.1, pick ωz ∈ D(Qθ) and σ ∈ Sn. Clearly

ωn =
λσ(1)

λ1

·
λσ(2)

λ2

· · ·
λσ(n)

λn
= 1.

Moreover, if σ contains a cycle (i1i2 . . . ik), that is, if σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) =
ik, and σ(ik) = i1, then

ωk =
λσ(i1)

λi1
·
λσ(i2)

λi2
· · ·

λσ(ik)

λik
= 1.

Recall that for each n ∈ N, we use 〈e 2πi
n z〉 to denote the finite cyclic group{

e
2πit
n z : t = 0, 1, . . . , n− 1

}
,

under composition generated by e
2πi
n z, where e

2πi
n is the primitive n-th root of unity. The

above remark yields the following corollary:

Corollary 4.3. Let θ be a finite Blaschke product with θ(0) 6= 0. If n := #Z(θ), then

D(Qθ) ⊆ 〈e
2πi
n z〉.

We can say a little more about D(Qθ):

Lemma 4.4. Let θ be a finite Blaschke product with θ(0) 6= 0. If n := #Z(θ), then

D(Qθ) is a cyclic subgroup of 〈e 2πi
n z〉.

Proof. Let ϕ ∈ D(Qθ). By Theorem 3.5, there exists ω ∈ T such that ϕ = ωz. By part
(1) of Corollary 3.6, we have

1

ω
z = ωz ∈ D(Qθ).

Note that ωz is the inverse of ωz under composition. Hence D(Qθ) is a subgroup of the

cyclic group 〈e 2πi
n z〉. �

We now recall the general fact that the order of any subgroup of a finite cyclic group
divides the order of the group. Therefore, we obtain the following corollary (this result
should be comparable to [9, Theorem 2.3]):

Corollary 4.5. Let θ be a finite Blaschke product. Assume that θ(0) 6= 0. Then

D(Qθ) = 〈e
2πi
d z〉,

for some divisor d of #Z(θ).
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As an example, we consider the following:

Example 4.6. Suppose θ is a finite Blaschke product with four distinct zeros and θ(0) 6= 0.
Then there are exactly three possible cyclic groups for D(Qθ):

{z}, 〈−z〉 = {z,−z}, and 〈iz〉 = {z,−z, iz,−iz}.

Given an integer n and a divisor d of n, one expects that there exists a finite Blaschke
product θ such that #Z(θ) = n and D(Qθ) = 〈e 2πi

d z〉. This is indeed the case:

Theorem 4.7. Let n ∈ N, and let d be a divisor of n. Then there exists a Blaschke
product θ such that n := #Z(θ) and

D(Qθ) = 〈e
2πi
d z〉.

Proof. Let md = n. Fix scalars 0 < r1 < · · · < rm < 1, and consider the finite Blaschke
product

θ =
m∏
t=1

d∏
s=1

btαsrt ,

where α = e
2πi
d . Clearly, #Z(θ) = n, and

Z(θ) = {αsrt : 1 ≤ s ≤ d, 1 ≤ t ≤ m} ,
and

multθ(α
srt) = t,

for all 1 ≤ s ≤ k. In particular, θ has exactly n(= dm) zeros, all located on the circle
|z| = rj, for each j = 1, . . . ,m. Label all zeros of θ as λ1, . . . , λn so that

λ1 = r1α, . . . , λd = r1α
d,

and then
λd+1 = r2α, . . . , λ2d = r2α

d,

and so on. Accordingly, the first d zeros have multiplicity 1, the next d zeros have
multiplicity 2, and so forth. Suppose ϕ ∈ D(Qθ), that is, Cϕ(Qθ) ⊆ Qθ. By Theorem 4.1,
there exist β ∈ T and σ ∈ Sn such that ϕ(z) = βz and

β̄ =
λσ(i)

λi
,

and multθ(λi) = multθ(λσ(i)) for all i = 1, . . . , n. In particular, this implies that the
restriction of σ acts as a permutation on each of the sets {1, . . . , d}, {d+ 1, . . . , 2d}, and
so on. In particular,

β̄d =
λσ(1)

λ1

λσ(2)

λ2

· · ·
λσ(d)

λd
= 1,

that is, βd = 1. As β ∈
{

1, α, . . . , αd−1
}

, it follows that D(Qθ) ⊆ 〈αz〉. For the reverse
inclusion, note that from our construction it is clear that

multθ(λ) = multθ(αλ),

for all λ ∈ Z(θ). Then, by part (2) of Corollary 3.6, it follows that αz ∈ D(Qθ). Since
D(Qθ) is a semi-group, we conclude that

{αz, α2z, . . . , αd−1z, αdz = z} ⊆ D(Qθ),
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and hence 〈αz〉 ⊆ D(Qθ). This completes the proof. �

Given a finite Blaschke product θ with θ(0) 6= 0, by Corollary 4.3, we know that

D(Qθ) ⊆ 〈e
2πi
n z〉, where #Z(θ) = n. It is natural to ask, when do we have

D(Qθ) = 〈e
2πi
n z〉?

In the following, we answer to this question. Before that, we set up a notation: Given a
set of n distinct points {λ1, . . . , λn} ⊆ D \ {0}, we define

Λn =

{
λ1

λ1

,
λ2

λ1

, . . . ,
λn
λ1

}
.

Theorem 4.8. Let {λ1, . . . , λn} be a set of n distinct points in D \ {0} and let mi ∈ N,
i = 1, . . . , n. Define

θ =
n∏
i=1

bmiλi .

Then

D(Qθ) = 〈e
2πi
n z〉,

if and only if Λn is a multiplicative group, and

m1 = m2 = · · · = mn.

Proof. Let α = e
2πi
n . First, we prove the sufficiency part. Since all the λi’s are distinct,

the multiplicative group Λn has order n. Consequently, every element of Λn must be an
n-th root of unity. This implies that

Λn =
{

1, α, . . . , αn−1
}
,

and hence

{λ1, λ2, . . . , λn} = {λ1, αλ1, . . . , α
n−1λ1}.

By Corollary 3.6, we know that e
2πi
n z ∈ D(Qθ), which implies 〈e 2πi

n z〉 ⊆ D(Qθ). The

reverse inclusion, D(Qθ) ⊆ 〈e
2πi
n z〉, is due to Corollary 4.3. This proves that 〈e 2πi

n z〉 =
D(Qθ). For the necessary part, assume that D(Qθ) = 〈αz〉. As αz ∈ D(Qθ), by Corollary
3.6, we have

{αλ1, . . . , α
n−1λ1} ⊆ Z(θ),

and the multiplicities of all these zeros are the same as that of λ1. Consequently, Λn =
{1, α, . . . , αn−1}, which completes the proof of the theorem. �

We know from Corollary 4.5 that D(Qθ) = 〈e 2πi
d z〉 for some divisor d of n. This leads

us to the following question: Given a finite Blaschke product θ not vanishing at the origin
and a divisor d of n := #Z(θ), when does

D(Qθ) = 〈e
2πi
d z〉?

The following result provides an answer. Here, we make use of the prime factorization of
n = #Z(θ).
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Theorem 4.9. Let θ be a finite Blaschke product and let d be a divisor of n := #Z(θ).
Suppose θ(0) 6= 0 and let

n = pk11 p
k2
2 ...p

km
m ,

be the prime factorization of n. Then

D(Qθ) = 〈e
2πi
d z〉,

if and only if

multθ(λ) = multθ(e
2πi
d λ),

for all λ ∈ Z(θ), and for each j ∈ {1, . . . ,m}, there exist λj ∈ Z(θ) such that

multθ(λj) 6= multθ(e
2πi
dpj λj).

Proof. Suppose D(Qθ) = 〈e 2πi
d z〉. Then e

2πi
d z ∈ D(Qθ) and e

2πi
dpj z 6∈ D(Qθ) for all j =

1, . . . ,m. The necessary part then follows from Theorem 3.5 and Corollary 3.6. For the
reverse direction, assume that multθ(λ) = multθ(e

2πi
d λ) for all λ ∈ Z(θ). Theorem 3.5

implies that

e
2πi
d z ∈ D(Qθ),

and hence 〈e 2πi
d z〉 ⊆ D(Qθ). On the other hand, by Theorem 4.5, there exists a divisor `

of n such that
D(Qθ) = 〈e

2πi
` z〉.

Suppose ` 6= d. Since e
2πi
d z ∈ 〈e 2πi

` z〉, there exist k ∈ {1, . . . , `} such that

e
2πi
d = e

2πik
` ,

which implies
1

d
− k

`
∈ Z.

As d ≥ 1 and k
`
∈ (0, 1], it follows that

1

d
− k

`
∈ (−1, 1),

which yields
1

d
− k

`
= 0,

equivalently, ` = kd. In particular, d is a divisor of `. Since ` 6= d and p1, . . . , pm are all
the prime factors of `, it follows that

dpj|`,
for some j = 1, . . . ,m. Then

e
2πi
dpj z ∈ 〈e

2πi
` z〉 = D(Qθ),

and hence, by Theorem 3.5, we have multθ(λ) = multθ(e
2πi
dpj λ) for all λ ∈ Z(θ). This

contradicts to the other condition that for each j ∈ {1, . . . ,m}, there exist λj ∈ Z(θ)
such that

multθ(λj) 6= multθ(e
2πi
dpj λj).

Therefore, we conclude that ` = d, that is, D(Qθ) = 〈e 2πi
d z〉. This completes the proof of

the theorem. �
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A natural question that arises is, what would be the correct analogue of the statement
of the above theorem for general Blaschke products (and then for inner functions)? Where
this analogy is unclear, one may consider an infinite cyclic group and ask whether there
exists a meaningful connection between such a group and infinite Blaschke products (or
inner functions). Some more concrete questions along these lines will be outlined at the
end of the paper.

5. On nontrivial groups

In this section, we provide a complete solution to the question of the nontriviality of
both L(Qθ) and D(Qθ). In a sense, the nontriviality of these spaces is closely related, as
already observed in Proposition 2.2, where we have

D(Qθ) ⊆ L(Qθ).
We begin by addressing an equivalent formulation of the problem namely, determining
when D(Qθ) is trivial. We proceed from simple cases to the most general ones. As we
will see, the results for all cases, from particular to general, differ. Recall that given a set
{λ1, . . . , λn} of n distinct points in D \ {0}, we define

Λn =

{
λ1

λ1

,
λ2

λ1

, . . . ,
λn
λ1

}
,

and regard it as a multiplicative group whenever we wish to view it as a group. The
following result comes directly from existing results:

Proposition 5.1. Let n be a prime number, {λ1, . . . , λn} ⊆ D \ {0} be a set of n distinct
scalars, and let {mi}ni=1 ⊆ N. Define

θ =
n∏
i=1

bmiλi .

Then D(Qθ) = {z} if and only if either not all the mi’s are equal or Λn is not a group.

Proof. Since n is prime, Corollary 4.5 implies that D(Qθ) is either {z} or 〈e 2πi
n z〉. The

equivalent formulation of the proposition now follows directly from Theorem 4.8. �

Note that Λ2 = {λ1/λ1, λ2/λ1} is a multiplicative group if and only if

λ1 + λ2 = 0.

Therefore, we have the following easy consequence: Let {λ1, λ2} be a pair of distinct
points in D \ {0}, and let m1,m2 ∈ N. Define

θ = bm1
λ1
bm2
λ2
.

Then we have the following:

(1) D(Qθ) = {z} if and only if m1 6= m2 or λ1 + λ2 6= 0.
(2) D(Qθ) = {z,−z} if and only if m1 = m2 and λ1 + λ2 = 0.

Proposition 5.1 addresses the triviality of D(Qθ) in the case where n = #Z(θ) is a
prime number. We now turn to the case of general natural numbers. Our eventual goal
is to apply the prime factorization of n, and as a first step, we consider the case where n
is a prime power:
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Proposition 5.2. Let θ be a finite Blaschke product. Assume that θ(0) 6= 0 and #Z(θ) =
pk for some prime p and k ∈ N. Then D(Qθ) = {z} if and only if there exists λ ∈ Z(θ)
such that

multθ(λ) 6= multθ(e
2πi
p λ).

Proof. By Theorem 4.4, we know that D(Qθ) is a subgroup of 〈e
2πi

pk z〉. Since every non-

trivial subgroup of 〈e
2πi

pk z〉 contains e
2πi
p z, it follows that D(Qθ) = {z} if and only if

e
2πi
p z 6∈ D(Qθ). However, by Corollary 3.6, the latter occurs if and only if there exists

λ ∈ Z(θ) such that multθ(λ) 6= multθ(e
2πi
p λ). �

We now consider the general case of n = #Z(θ):

Theorem 5.3. Let θ be a finite Blaschke product. Assume that θ(0) 6= 0. Consider the
prime factorization of n := #Z(θ) as

n = pk11 · · · pkmm .

Then D(Qθ) = {z} if and only if for each j ∈ {1, . . . ,m}, there exists λj ∈ Z(θ) such
that

multθ(λj) 6= multθ(e
2πi
pj λj).

Proof. Suppose D(Qθ) = {z} and fix j ∈ {1, . . . ,m}. Since e
2πi
pj z 6∈ D(Qθ), part (3) of

Corollary 3.6 implies

multθ(λj) 6= multθ(e
2πi
pj λj),

for some λj ∈ Z(θ). For the converse, we proceed by contradiction. Suppose, for the sake
of argument, that D(Qθ) 6= {z}. By Theorem 4.5, there exists a divisor d(> 1) of n such
that

D(Qθ) = 〈e
2πi
d z〉.

Thus, there exists a prime factor pj of n such that pj|d; that is, d = pj` for some ` ∈ N.
Hence

e
2πi
pj z =

(
e

2πi
d

)`
z ∈ 〈e

2πi
d z〉 = D(Qθ),

that is, e
2πi
pj z ∈ D(Qθ) for some j ∈ {1, . . . ,m}. By Theorem 3.5, it then follows that

multθ(λ) = multθ(e
2πi
pj λ) for all λ ∈ Z(θ), which leads to a contradiction. �

In the setting of the above result, we obtain the following by contrapositive which serves
as an analog of the nontriviality question for D(Qθ) in the case of L(Qθ):

D(Qθ) 6= {z},
if and only if there exist a prime factor pj of n such that

multθ(λ) = multθ(e
2πi
pj λ),

for all λ ∈ Z(θ). Moreover, in this case, we have

〈e
2πi
pj z〉 ⊆ D(Qθ).

Theorem 5.4. Let θ be a finite Blaschke product. Then L(Qθ) = {z} if and only if the
following conditions hold:
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(1) θ(0) 6= 0.
(2) #Z(θ) ≥ 2.
(3) For every non-constant affine map az + b, other than the identity, there exists

λ ∈ Z(θ) such that

multθ(λ) 6= multθ

(
āλ

1− b̄λ

)
.

Proof. Suppose L(Qθ) = {z}. If θ(0) = 0, then L(Qθ) ⊇ C (recall that here C refers to
the set of all constant functions), which is uncountable and hence not possible. Therefore,
θ(0) 6= 0. If θ has only one zero, then by Proposition 3.1, L(Qθ) is again uncountable.
Hence, #Z(θ) ≥ 2. Part (c) follows from Lemma 3.3. The converse also follows easily
from Lemma 3.3. �

In particular, we have: Let θ be a finite Blaschke product. Then L(Qθ) is nontrivial if
and only if any one of the following holds:

(1) θ(0) = 0.
(2) There exist n ∈ N and a nonzero λ ∈ D such that θ = bnλ.
(3) θ(0) 6= 0, #Z(θ) ≥ 2, and there exists a non-constant affine map az+ b other than

identity such that for all λ ∈ Z(θ), we have

multθ(λ) = multθ

(
āλ

1− b̄λ

)
.

6. Blaschke products vanishing at 0

Here, we consider model spaces corresponding to finite Blaschke products that vanish
at the origin. In this setting, the results often differ from those in the case where the
Blaschke product does not vanish at the origin. We will also observe that the sets D(Qθ)
and L(Qθ) may contain constant functions. Keeping this in mind, throughout the paper,
for any subset X ⊆ C, when we write

X ⊆ D(Qθ),
we mean that D(Qθ) contains constant functions that assume values in X. The same
convention will be used for L(Qθ). For simplicity of notation, we write

L(Qθ)∗ = L(Qθ) \ C and D(Qθ)∗ = D(Qθ) \ D.
The following is the α = 0 case of [11, Theorem 3.1], along with its direct consequence:

Proposition 6.1. Let θ(z) = zm, m ≥ 2. Then

(1) L(Qθ) = {az + b : a, b ∈ C, a 6= 0} ∪ C.
(2) D(Qθ) = {az + b : a, b ∈ C, a 6= 0, |a|+ |b| ≤ 1} ∪ D.
(3) L(Qθ)∗ = {az + b : a, b ∈ C, a 6= 0} is a non-cyclic group.
(4) D(Qθ)∗ is not a group.

As for the proof of part (4) above, we simply note that z
2
∈ D(Qθ)∗, but it is not

invertible under composition.
Classifications of the elements of D(Qθ) for Blaschke products considered below were

obtained in [9, Theorem 2.5]. Here, however, we present a different classification, which
will be useful. Let Mob(C∞) denote the group of all Möbius transformations of C∞ =
C ∪ {∞}.
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Theorem 6.2. Let λ ∈ D be a nonzero scalar, n ∈ N, and let ϕ ∈ S(D) be a nonconstant
function. Define

θ = zbnλ.

Then CϕQθ ⊆ Qθ if and only if ϕ ∈ Mob(C∞) and

ϕ

(
1

λ̄

)
=

1

λ̄
.

Proof. Suppose ϕ ∈ D(Qθ). As usual,

1

1− λ̄ϕ
= Cϕ

(
1

1− λ̄z

)
∈ Qθ,

implies that ϕ is a rational function. On the other hand, since (recall the basis functions
from (2.2)) 1

(1−λ̄z)n ∈ Qθ, there exist scalars {c0, c1, . . . , cn} such that

1

(1− λ̄z)n
◦ ϕ =

1

(1− λ̄ϕ)n
= c0 +

n∑
k=1

ck
(1− λ̄z)k

.

As ϕ is nonconstant, there exists j ∈ {1, . . . , n} such that cj 6= 0. The right-hand side of
the above equation has exactly one pole at z = 1

λ̄
, of order at most n. This implies that

1

1− λ̄ϕ
has a simple pole at z = 1

λ̄
. Therefore, there exist scalars a and b( 6= 0) such that

1

1− λ̄ϕ
= a+

b

1− λ̄z
,

which implies that ϕ must be a Möbius transformation fixing the point
1

λ̄
. For the converse

direction, let ϕ ∈ Mob(C∞) and assume that

ϕ
(1

λ̄

)
=

1

λ̄
.

Then 1− λ̄ϕ(z) has a single zero at
1

λ̄
. There exist scalars α, β ∈ C such that

1

1− λ̄ϕ
=
az + b

1− λ̄z
= α +

β

1− λ̄z
.

Thus
1

(1− λ̄ϕ)k
∈ span

{
1,

1

1− λ̄z
, . . . ,

1

(1− λ̄z)k

}
⊆ Qθ,

for all k = 1, . . . , n, and consequently Cϕ(Qθ) ⊆ Qθ. This completes the proof of the
theorem. �

Analogous result for L(Qθ) is also true with the same lines of proof. Thus, we give
representations of D(Qθ) and L(Qθ) as follows:

Corollary 6.3. Let λ ∈ D \ {0} and let n ∈ N. Define

θ = zbnλ.

Then

L(Qθ) =

{
ϕ ∈ Mob(C∞) : ϕ

(
1

λ̄

)
=

1

λ̄

}
∪ C,
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and

D(Qθ) =

{
ϕ ∈ S(D) ∩Mob(C∞) : ϕ

(
1

λ̄

)
=

1

λ̄

}
∪ D.

Moreover, in this case, D(Qθ)∗ ∩Aut(D) is uncountable, and L(Qθ)∗ is an infinite group
that is not cyclic.

Proof. The first two identities follow from the previous theorem. Pick ϕ ∈ D(Qθ)∗ ∩
Aut(D). In particular, there exist α ∈ R and a ∈ D such that

ϕ(z) = eiαba.

The condition ϕ

(
1

λ̄

)
=

1

λ̄
is equivalent to the identity

eiαλ̄(1− aλ̄) = λ̄− ā.

From this, we deduce that |λ| =
∣∣∣∣ a− λ1− aλ̄

∣∣∣∣, which implies

1− |λ|2 = 1−
∣∣∣∣ a− λ1− aλ̄

∣∣∣∣2 .
Since

1−
∣∣∣∣ a− λ1− aλ̄

∣∣∣∣2 =
(1− |λ|2)(1− |a|2)

|1− aλ̄|2
,

and 1− |λ|2 6= 0, the above identity simplifies to

|1− aλ̄|2 + |a|2 = 1,

equivalently,

(1 + |λ|2)|a|2 − 2Re(aλ̄) = 0.

This implies that a lies on the circle C(λ), centered at
λ

1 + |λ|2
with radius

|λ|
1 + |λ|2

, that

is, a ∈ C(λ), where

C(λ) =

{
z ∈ C :

∣∣∣∣z − λ

1 + |λ|2

∣∣∣∣2 =

(
|λ|

1 + |λ|2

)2
}
.

Since 0 < |λ| < 1, it follows that

|λ|
1 + |λ|2

<
1

2
,

and hence

C(λ) ⊆ D.
In particular, the set D(Qθ)∗∩Aut(D) is uncountable. Since D(Qθ)∗ ⊆ L(Qθ)∗, it follows
that L(Qθ)∗ is also uncountable. If a Möbius map ϕ fixes 1

λ̄
, then its inverse ϕ−1 also

fixes 1
λ̄
. Hence ϕ−1 ∈ L(Qθ)∗, which implies that L(Qθ)∗ forms a group with uncountably

many elements. Therefore, it cannot be a cyclic group. This concludes the proof. �
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The proof of the above corollary implies that

D(Qθ)∗ ∩ Aut(D) =

{
1

λ̄
ba(λ)ba : a ∈ γ

}
.

Note also that D(Qθ)∗ is a group if and only if

D(Qθ)∗ ∩ Aut(D) = D(Qθ)∗.

Next, we proceed to the case of Blaschke products that have the origin as a zero of
higher multiplicity, along with one nonzero zero. An incomplete statement addressing
this setting appeared in [9, Theorem 2.9]. In particular, it omitted the most nontrivial
aspect of the result. Our formulation corrects and completes that statement, and we also
provide a full proof.

Theorem 6.4. Let m ≥ 2, n ≥ 1, and let λ ∈ D \ {0}. Define

θ = zmbnλ.

Then

L(Qθ) =

{
(1− λ̄a)z + a : a 6= 1

λ̄

}
∪
(
C \

{
1

λ̄

})
,

and

D(Qθ) = {z} ∪ D.

Proof. In view of (2.1) and (2.2), we have

Qθ = span

{
1, z, . . . , zm−1,

1

1− λ̄z
, . . . ,

1(
1− λ̄z

)n
}
.

If ϕ ∈ S(D) is constant, then Cϕ maps H2(D) into the space of constant functions.
Therefore, only subspaces that contain constants can be invariant under Cϕ. On the
other hand, If ϕ(z) = z, then the operator Cϕ is the identity operator, implying that Qθ
is invariant under Cϕ. Moreover, a simple computation shows that L(Qθ) contains the
functions on the right side of the identity in the statement.
For the converse direction, assume that Qθ is invariant under Cϕ. In particular,

Cϕ

(
1

1− λ̄z

)
∈ Qθ,

and hence there exist scalars c1, . . . , cm−1 and d1, . . . , dn, not all zero, such that

(6.1)
1

1− λ̄ϕ
= c0 + c1z + · · ·+ cm−1z

m−1 +
n∑
k=1

dk
(1− λ̄z)k

.

In particular, ϕ is a rational function of the form ϕ = p
q
, where p and q are polynomials

with no common factors. We can then rewrite (6.1) as follows:

(6.2)
q

q − λ̄p
= c0 + c1z + · · ·+ cm−1z

m−1 +
n∑
k=1

dk
(1− λ̄z)k

.
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If dj = 0 for all j ∈ {1, . . . , n}, then this contradicts the assumption that p and q have no
common factors. Therefore, we may assume that dj 6= 0 for some j ∈ {1, . . . , n}. As

Cϕ

( 1

(1− λ̄z)n

)
=

1

(1− λ̄ϕ)n
∈ Qθ,

there exist scalars α0, α1, . . . , αm−1 and β1, . . . , βn such that

1

(1− λ̄ϕ)n
= α0 + α1z + · · ·+ αm−1z

m−1 +
n∑
k=1

βk
(1− λ̄z)k

Since the left-hand side of the identity has a pole 1
λ̄

of order at most n, it follows that
1

1− λ̄ϕ
must have a simple pole at 1

λ̄
. Then (6.1) becomes

1

1− λ̄ϕ
= c0 + c1z + · · ·+ cm−1z

m−1 +
d1

1− λ̄z
,

where d1 6= 0. Since the right-hand side of the above identity has a simple pole at 1
λ̄
, it

follows that 1− λ̄ϕ must vanish at 1
λ̄
, that is,

ϕ

(
1

λ̄

)
=

1

λ̄
.

As z ∈ Qθ, we have ϕ ∈ Qθ. On the other hand, ϕ( 1
λ̄
) 6=∞ implies that ϕ is a polynomial

of degree at most m− 1. It follows that

ϕ(z) = b0 + b1z + · · ·+ bm−1z
m−1,

for some constants b0, b1, . . . , bm−1. If degϕ ≥ 2, then 1− λ̄ϕ is also polynomial of degree

at least 2. However, this is not possible, since
1

1− λ̄ϕ
has only a simple pole. Thus, we

must have

ϕ(z) = b0 + b1z,

with b1 6= 0, because ϕ is nonconstant. Consequently, 1 − λ̄ϕ is polynomial of degree 1
and vanishing at 1

λ̄
. There exists a nonzero scalar γ such that

1− λ̄ϕ(z) = γ(1− λ̄z).

This implies

1

1− λ̄ϕ(z)
=

1
γ

1− λ̄z
,

Cross-multiplying the above identity yields the desired representation of ϕ, which now
belongs to L(Qθ). For D(Qθ), Lemma 2.3 implies that ϕ(z) = z for all z ∈ D. This
completes the proof. �

The following is now immediate:

Corollary 6.5. Let m ≥ 2 and n ≥ 1 be natural numbers, and let λ ∈ D \ {0}. Define

θ = zmbnλ.

Then D(Qθ)∗ is a trivial group and L(Qθ)∗ is an uncountable group.
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With this result, we now have a clearer picture of the structure of the sets D(Qθ) and
L(Qθ) when θ = zmbnλ for λ ∈ D \ {0} and m,n ≥ 1.

7. Möbius transformations

As in the previous section, we continue here under the assumption that the finite
Blaschke product vanishes at the origin. Here, we assume that the finite Blaschke product
has at least two distinct zeros, aside from the origin. The main difference in this setting is
that the sets D(Qθ) and L(Qθ) will contain more Möbius transformations. We first make
a remark about the group structure of L(Qθ) in the case where the Blaschke product
vanishes at the origin.

Remark 7.1. Consider a finite Blaschke product θ with θ(0) = 0. In this case, the
constant functions belong to L(Qθ), but these are not invertible under composition. Hence,
L(Qθ) cannot be a group under composition.

Given a Möbius transformation ϕ(z) =
az + b

cz + d
, we construct another Möbius transfor-

mation ϕ̃ as

ϕ̃(z) =
āz − c
−b̄z + d̄

.

Moreover, given a self-map f and a natural number n, we write

f [n] = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

These transformations behave naturally:

Lemma 7.2. Let ϕ be a Möbius transformation, and let n ∈ N. We have the following:

(i) ϕ ∈ S(D) if and only if ϕ̃ ∈ S(D).
(ii) ϕ[n] = z if and only if ϕ̃[n] = z.

Proof. Define η(z) = ϕ(z̄) =
āz + b

c̄z + d̄
. Then

η = z̄ ◦ ϕ ◦ z̄.

Given that η−1(z) =
d̄z − b̄
−c̄z + ā

, we have

ϕ̃ =
1

z
◦ η−1 ◦ 1

z
.

In view of this, we see that ϕ is a self-map of D if and only if η is a self-map of D if and
only if η−1 is a self-map of

{z : |z| > 1} ∪ {∞},
if and only if ϕ̃ is a self-map of D. This completes the proof of part (i). For (ii), we
proceed similarly:

ϕ[n] = z ⇔ η[n] = z ⇔ (η−1)[n] = z ⇔ ϕ̃[n] = z.

This completes the proof of the lemma. �
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In the following, we consider finite Blaschke products θ satisfying θ(0) = 0, θ′(0) 6= 0,
and #(Z(θ)\{0}) ≥ 2. These conditions imply that there exists a finite Blaschke product

θ̂, not vanishing at the origin, such that θ = zθ̂ and #(Z(θ̂)) ≥ 2. The following is a part
of [9, Lemma 2.7].

Lemma 7.3. Let θ be a finite Blaschke product satisfying θ(0) = 0, θ′(0) 6= 0, and
#(Z(θ) \ {0}) ≥ 2. Let ϕ be a non-constant holomorphic self-map of C∞. If ϕ ∈ L(Qθ),
then ϕ is a Möbius transformation of the form

ϕ(z) =
az + b

cz + d
,

for some complex numbers a, b, c, d satisfying ad− bc 6= 0.

Note that the full-length version of Lemma 2.7 in [9] concerns representations of func-
tions ϕ ∈ L(Qθ) for the class of finite Blaschke products θ described above. We now use
the above part of the result to provide an alternative classification of functions in the sets
D(Qθ) and L(Qθ):

Theorem 7.4. Let θ be a finite Blaschke product satisfying θ(0) = 0, θ′(0) 6= 0, and let
#(Z(θ) \ {0}) ≥ 2. Then ϕ ∈ L(Qθ) if and only if ϕ is a Möbius transformation and

multθ(λ) = multθ(ϕ̃(λ)),

for all λ ∈ Z(θ) \ {0}. More over, we have

D(Qθ) = L(Qθ) ∩ S(D).

Proof. Suppose ϕ ∈ L(Qθ). By Lemma 7.3, ϕ is a Möbius transformation. Let

ϕ(z) =
az + b

cz + d
.

Fix λ ∈ Z(θ) \ {0}, and let m = multθ(λ). Now

1

1− λ̄z
◦ ϕ =

1

1− λ̄ϕ
=

1

1− λ̄az + b

cz + d

=
αz + β

1− aλ− c
−bλ+ d

· z
∈ Qθ,

for some scalars α and β. Then

(7.1)
1

1− λ̄ϕ
=

αz + β

1− ϕ̃(λ)z
= γ +

δ

1− ϕ̃(λ)z
∈ Qθ,

for some scalars δ 6= 0, γ ∈ C. This shows that ϕ̃(λ) ∈ Z(θ). Moreover, for each
k ∈ {1, . . . ,m}, we have

1

(1− λ̄ϕ)k
=

1

(1− λ̄z)k
◦ ϕ ∈ Qθ,

and hence (
δ

1− ϕ̃(λ)z

)k

=

(
1

1− λ̄ϕ
− γ
)k

=
k∑
j=0

cj
(1− λ̄z)j

∈ Qθ

for some scalars c1, . . . , ck. Therefore, ϕ̃(λ) ∈ Z(θ) and

m = multθ(λ) ≤ multθ(ϕ̃(λ)).
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If we set ϕ̃[0] := z, then, by induction, we have

multθ(ϕ̃
[k](λ)) ≤ multθ(ϕ̃

[k+1](λ)),

for all k ∈ Z+. This implies

ϕ̃[k+1](λ) ∈ Z(θ),

for all k ∈ N. Since θ has only finitely many zeros, it follows that ϕ̃[k](λ) = λ for some
k ∈ N. Thus, by (7.1), we have

multθ(λ) = multθ(ϕ̃(λ)).

Conversely, suppose ϕ is Möbius transformation of the form ϕ(z) =
az + b

cz + d
with ad−bc 6=

0, and assume that multθ(λ) = multθ(ϕ̃(λ)) for all λ ∈ Z(θ) \ {0}. Fix λ ∈ Z(θ) \ {0},
and let m = multθ(λ). As before,

1

1− λ̄ϕ
= γ +

δ

1− ϕ̃(λ)z
,

for some scalars δ 6= 0 and γ ∈ C. Since multθ(ϕ̃(λ)) = m, we have

1

(1− ϕ̃(λ)z)j
∈ Qθ,

for all j = 1, . . . ,m. As 1 ∈ Qθ, we also have

1

(1− λ̄z)k
◦ ϕ =

1

(1− λ̄ϕ)k
=

(
γ +

δ

1− ϕ̃(λ)z

)k

∈ Qθ,

for all k ∈ {1, . . . ,m}. Thus, Cϕ maps every basis element of Qθ into Qθ, and hence
ϕ ∈ L(Qθ). The identity D(Qθ) = L(Qθ) ∩ S(D) follows trivially. This completes the
proof. �

The similar proof as in Theorem 7.4 applies to the following result. This leads to yet
another characterization, as noted in [9, Lemma 2.10]: Let θ be a finite Blaschke product.
Suppose θ(0) = 0 with multiplicity at least 2 and #(Z(θ) \ {0}) ≥ 2. Then ϕ ∈ L(Qθ) if
and only if ϕ is a Möbius transformation of the form

ϕ(z) =
az + b

cz + d

for some scalars a, b, c, d satisfying ad− bc 6= 0, and

multθ(λ) = multθ(ϕ̃(λ)),

for all λ ∈ Z(θ) \ {0} and

multθ(−c/d) ≥ multθ(0)− 1.

Further, D(Qθ) = L(Qθ) ∩ S(D).
As an application, we have:

Corollary 7.5. Let θ be a finite Blaschke product with θ(0) = 0 and #(Z(θ) \ {0}) ≥ 2,
and let ϕ ∈ D(Qθ) be a non-constant function. Then:

(1) ϕ ∈ Aut(D).
(2) There exists m ∈ N such that ϕ[m] = z.
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Proof. Fix λ ∈ A := Z(θ) \ {0}. By (7.1), there exist scalars δ 6= 0 and γ ∈ C such that

1

1− λ̄ϕ
= γ +

δ

1− ϕ̃(λ)z

and ϕ̃(λ) ∈ Z(θ). If ϕ̃(λ) = 0, then this would imply ϕ is constant, which is not possible.
Thus, ϕ̃(λ) ∈ A. Since ϕ̃ is Möbius (and in particular, injective) map, it defines a
permutation on A. That is, ϕ̃ ∈ SN , where

N := #A.

There exist m ∈ N (for instance, m = N !) such that

ϕ̃[m] = z on A.

That is, every point of A is a fixed point of ϕ̃. As a consequence of the Schwarz lemma,
we conclude that

ϕ̃[m] = z on D,
since a holomorphic self-map of D with at least two fixed points must be the identity. By
applying part (ii) of Proposition 7.2, we obtain that ϕ[m] = z. Thus,

ϕ ◦ ϕ[m−1] = ϕ[m−1] ◦ ϕ = z.

That is, ϕ : D→ D is bijective. Hence ϕ is an automorphism of D. �

In particular, in the above setting, ϕ is either a rational elliptic automorphism of D or
ϕ = z. We also have the following result as a consequence.

Corollary 7.6. Let θ be a finite Blaschke product. Suppose θ(0) = 0 and #(Z(θ)\{0}) ≥
2. Then D(Qθ)∗ forms a group.

Proof. Assume that ϕ ∈ D(Qθ)∗. This implies ϕ[k] ∈ D(Qθ)∗ for all k ∈ N. By Corollary
7.5, there exists n ∈ N such that

ϕ−1 = ϕ[n−1] ∈ D(Qθ)∗,
which implies that D(Qθ)∗ is a group. �

As for the group structure of L(Qθ)∗, we have the following:

Corollary 7.7. Let θ be a finite Blaschke product. Suppose θ(0) = 0 and #(Z(θ)\{0}) ≥
3. Then L(Qθ)∗ forms a group.

Proof. Assume that ϕ ∈ L(Qθ)∗. Set A := Z(θ) \ {0}. Then as in the proof of Corollary
7.5, there exist m ∈ N such that

ϕ̃[m] = z,

on A. Therefore the Möbius map ϕ̃[m] has at least #A(≥ 3) fixed points. This implies

ϕ̃[m] = z on C∞.

Again, by reasoning similar to that used in the above corollary, we obtain that ϕ−1 ∈
L(Qθ)∗, which implies that L(Qθ)∗ is a group. �

Suppose #A = 2. In this case, ϕ̃[m] has two fixed points in D for some m ∈ N. It is not
known whether L(Qθ)∗ forms a group in this case.
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8. An example

The focus of this section is an example that was presented as an illustration of Theorem
2.4 in [9], and which appeared immediately after Corollary 2.4 in the same reference. We
point out that the conclusion drawn in that example is not necessarily valid in all cases.
In this section, we also correct the error and provide a precise statement that accurately
reflects the situation illustrated by the example in [9].

We recall the setting of [9]: Fix distinct points {λ1, . . . , λs} from D \ {0} and fix a
natural number n(≥ 2). Set

a = e
2πi
n .

Define

θ =
s∏
j=1

(
n∏
k=1

bakλj

)mj

.

In this case, the statement following Corollary 2.4 in [9] asserts that

D(Qθ) = {z, az, . . . , an−1z}.

We first point out that this conclusion is not correct: Consider the case with n = 2, and

a = −1.

We choose

s = 2, λ1 =
1

2
, λ2 =

i

2
,

with m1 = m2 = 1. Then

θ = b− 1
2
b 1

2
b− i

2
b i

2
,

and according to [9], one concludes that

(8.1) D(Qθ) = {z,−z}.

We apply the results proved in this paper to show that this conclusion is incorrect. Note
that

Z(θ) =

{
±1

2
,± i

2

}
,

and all zeros have multiplicity one. In particular, we have

multθ(λ) = multθ(iλ),

for all λ ∈ Z(θ). By part (2) of Corollary 3.6, we have iz ∈ D(Qθ), and hence

〈iz〉 = {±z,±iz} ⊆ D(Qθ).

On the other hand, by Lemma 4.4, we have D(Qθ) ⊆ 〈iz〉, and consequently

D(Qθ) = {±z,±iz}.

This is clearly different from the identity claimed in (8.1). In this case, observe that all
the zeros are simple. Hence, even if one assumes that the zeros of θ are all distinct, claim
(8.1) is false. However, there is a fix to this claim, which we state as follows:
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Theorem 8.1. Let n ≥ 2 be a natural number, and let {λ1, . . . , λs} ⊆ D \ {0}. Set

θ =
s∏
j=1

(
n∏
k=1

bakλj

)mj

,

where
a = e

2πi
n .

Assume that {|λ1|, . . . , |λs|} is a set of distinct real numbers. Then

D(Qθ) = 〈az〉.

Proof. By definition of θ, we have

Z(θ) =
s⋃
j=1

{
λj, aλj, a

2λj, . . . , a
n−1λj

}
,

with the property that
multθ(a

kλj) = mj,

for all k = 1, . . . , n. Therefore, multθ(λ) = multθ(aλ) for all λ ∈ Z(θ). Thus, by part (2)
of Corollary 3.6, this implies that az ∈ D(Qθ), and hence

〈az〉 ⊆ D(Qθ),
as D(Qθ) is a group. To prove the reverse inclusion, we pick ϕ ∈ D(Qθ). We know by
Theorem 4.1 that

ϕ = ωz,

for some ω ∈ T. Since λ1 ∈ Z(θ), again, by part (2) of Corollary 3.6, ωλ1 ∈ Z(θ) and
|ωλ1| = |λ1|. As |λp| 6= |λq| for all p 6= q, it follows that

ωλ1 ∈
{
λ1, aλ1, . . . , a

n−1λ1

}
,

and hence, there exists k ∈ {0, 1, . . . , n− 1} such that

ω = ak.

This proves that D(Qθ) ⊆ 〈az〉, and consequently, we have D(Qθ) = 〈az〉. �

The example at the beginning of this section shows that the additional assumption
|λi| 6= |λj| for all i 6= j (as opposed to λi 6= λj for all i 6= j) cannot be omitted from the
theorem. There are other ways to obtain a similar conclusion. For instance, we have the
following: Let n ≥ 2 be a natural number, and let {λ1, . . . , λs} ⊆ D \ {0} be a set of
distinct scalars. Set

θ =
s∏
j=1

(
n∏
k=1

bakλj

)mj

,

where a = e
2πi
n . Assume that mi 6= mj for all i 6= j. Then

D(Qθ) = 〈az〉.
The proof of 〈az〉 ⊆ D(Qθ) is the same. As above, pick ϕ = ωz ∈ D(Qθ) for some
ω ∈ T. As λ1 ∈ Z(θ) and ωz ∈ D(Qθ), it follows from part (2) of Corollary 3.6 that
ωλ1 ∈ {λ1, aλ1, . . . , a

n−1λ1}. The remainder of the proof proceeds as before.
Once again, our example shows that the additional condition on multiplicities cannot,

in general, be omitted unless the |λj|’s are all distinct.
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9. Concluding remarks

In this concluding section, we offer some additional remarks on finite-dimensional model
spaces that are invariant under composition operators. The following result, while ele-
mentary, is quite intriguing. Moreover, the same conclusion holds in the context of the
space L(Qθ) (that is, for Cϕ with ϕ ∈ L(Qθ)):

Theorem 9.1. Let θ be a finite Blaschke product that does not vanish at the origin, and
let ϕ ∈ S(D). Then

Cϕ(Qθ) ⊆ Qθ,
if and only if

Cϕ(Qθ) = Qθ.

Proof. Suppose Cϕ(Qθ) ⊆ Qθ. By Theorem 3.5, we know that ϕ is a rotation. Pick f and
g from Qθ so that Cϕf = Cϕg, that is,

f ◦ ϕ = g ◦ ϕ.

As ϕ is rotation, it follows that

f ≡ g,

and hence Cϕ is injective. Since Qθ is a finite-dimensional space, the rank–nullity theorem
implies that Cϕ is surjective. �

The situation changes when we assume that θ(0) = 0: For ϕ ∈ S(D), assume that
Cϕ(Qθ) ⊆ Qθ. Then

Cϕ(Qθ) = Qθ,
if and only if

θ = z.

Indeed, if θ = z, then Qθ is one dimensional, and Qθ = C. Then

1 ◦ ϕ = 1,

for all ϕ ∈ S(D), and hence Cϕ(Qθ) = Qθ. For the converse direction, assume that θ 6= z.
Given that θ(0) = 0, there exists a non-constant finite Blaschke product B such that
θ = zB, which implies that

C $ Qθ.
For a constant map ϕ ∈ S(D), as

Cϕ(Qθ) = C ( Qθ,

we conclude that Cϕ(Qθ) 6= Qθ. This proves that θ = z implies Cϕ(Qθ) = Qθ.
In particular, for θ(0) = 0, we have the following:

(1) If θ = z on D, then Cϕ(Qθ) = Qθ for all ϕ ∈ S(D).
(2) If θ 6= z, then there exists ϕ ∈ S(D) such that Cϕ(Qθ) ⊆ Qθ and Cϕ(Qθ) 6= Qθ.

In [8] (see also [1]), it was pointed out that, given a composition operator, there always
exists a shift-invariant subspace that is invariant under the composition operator. A sim-
ilar question can be posed for model spaces (that is, backward shift-invariant subspaces).
The following result addresses this issue explicitly.
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Remark 9.2. If θ = z, then Qθ = C is trivially invariant under every composition
operator. Next, consider an analytic self-map ϕ of D that is not a Möbius map (for
instance, ϕ = z2). Since ϕ is neither a rotation nor a Möbius map, it follows from the
results of this paper that ϕ /∈ D(Qθ) for all θ other than z. That is, Qθ is not invariant
under Cϕ for any θ other than z. Hence, there exist many composition operators for which
no non-trivial model space is invariant. That is, except for C, all other model spaces fail
to be invariant under any composition operator induced by a non-Möbius maps.

The results of this paper once again suggest that the theory of composition operators
even when restricted to finite-dimensional model spaces exhibits significant variation from
case to case. In particular, the results differ substantially between the cases of finite
Blaschke products that vanish at the origin and those that do not. Even within these
broad categories, the behavior further varies depending on specific subcases.

The following is a summary of some of the main results concerning finite-dimensional
model spaces. These results are established in this paper. However, we reiterate that
some of them are derived from [9] and are presented here either verbatim (see also [11]) or
in a modified, corrected, or expanded form. In the following, θ denotes a finite Blaschke
product, and Qθ refers to the corresponding finite-dimensional model space, with

dimQθ = deg θ.

The first row of the following table specifies the conditions imposed on the function θ,
while the remaining rows outline the corresponding properties under each condition:

θ(0) 6= 0 θ(0) = 0

1 L(Qθ) is a finite set L(Qθ) ⊇ C, and hence uncountable

2 L(Qθ) is a finite cyclic group
L(Qθ) \ C is always a group except for one
unknown case

3
Every element in L(Qθ) is of
the form ϕ(z) = az + b

Every element in L(Qθ) is either a constant
or az+b

cz+d
.

4
In some cases, L(Qθ) = {z}
(cf. Theorem 2.3)

Always L(Qθ) 6= {z}

5
Cϕ(Qθ) ⊆ Qθ ⇒ Cϕ(Qθ) =
Qθ

Cϕ(Qθ) ⊆ Qθ ⇒ Cϕ(Qθ) = Qθ only when
θ(z) = z

These results, along with the techniques used to obtain them, raise several questions
of general interest. We conclude the paper by highlighting two particularly intriguing
ones: The first question concerns the classification of finite-dimensional spaces that are
invariant under composition operators. Specifically, given a finite-dimensional subspace
S ⊆ H2(D), classify all analytic self-maps ϕ ∈ S(D) such that

CϕS ⊆ S.

The second question concerns infinite Blaschke products. In the case of finite Blaschke
products that do not vanish at the origin, we observed that finite cyclic groups play a
central role in characterizing the self-maps that leave the corresponding finite-dimensional
model spaces invariant. Some of these results also make use of elementary tools, such
as the prime factorization of natural numbers that arise as the cardinality of the zero
set of finite Blaschke products. The natural next step is to explore this (or enhanced)
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phenomenon for model spaces associated with infinite Blaschke products that also do not
vanish at the origin.

It is anticipated that group-theoretic tools will again be relevant, though precisely how
they will be used remains an open and interesting problem. We expect a deeper interplay
between group theory and analytic function theory to be essential in developing a complete
understanding.
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